Fields

The concepts behind fields and how to configure them
v1.26

Sirenia

September 23, 2020

Fields

September 23,2020

Contents

1 Defining afield

1.1

1.2

1.3

Pathstofields
1.1.1 Path segments
1.1.2 Special and advanced techniques
Opticalfields
1.2.1 Using the built-in screenshot-taker
Testingapath

1.3.1 Using Cuesta

1.3.2 Using a flow or the debugger

2 Fields API

2.1

2.2

2.3

2.4

2.5

2.6

2.7

211 Parameters
212 Example 0L
213 Support.
Clickwithoffset.
221 Parameters
222 Example 0.
223 Support.
SimulatedClick
231 Example,
232 Support.

241 Example 00
242 Support.
Rightclick
251 Parameters
252 Example, .
253 Support.

Simulated click with offset
Right-click with offset

2.6.1 Parameters
2,62 Example
26.3 Support.
Doubleclick
271 Parameters
272 Example,

co N U1 »n

Sirenia

Fields September 23,2020
273 SUppOrt . . .o e e e e 17

2.8 Double-clickwithoffset e 17
2.8.1 Parameters L e e e e e e e e 17
2.8.2 Example . .. e e 17
2.8.3 SUppOrt . . . e e e 18

2.9 Clickcell. o e e 18
291 Parameters e e e e e e e e e e e e 18
2.9.2 Example . .. e e 18
2.9.3 Support. . .. e e e 19
200 Read o e 19
2001 Parameters L e e e e e e e e e e e 19
2.10.2 Example . .. e e e 19
2.00.3 Support e e e e e 19

201 EXiStS . . . e e e e e e 19
2110 Example . .. e e 20
2012 SUppOrt . . . e e e e e e e 20

202 InSpect e e e e e e e e e e e e e e 20
2021 Parameters e e e e e e e e e e e e e e e e e e 20
2.12.2 Reflectiondepth e 20
2123 Example . .. e e e 21
2024 Support. . .o e e e e 21
203 Input . L e e e e e e e e e e e e e e e 21
2130 Parameters e e e e e e e e e e e e 21
2132 Example . .. e e e e e e 21
2033 SUPPOrt . . . e 22
214 Nativeinput. e e e e e 22
2040 Parameters L e e e e e e e e e e e e e e 22
2142 Example . .. e e e e 22
2043 SUPPOIt . .« o o o e 22
2.15 Nativeinputwithdelay e 22
2150 Parameters L e e e e e e e e e e e 23
2152 Example . .. e e e e 23
21053 SUPPOrt . . . o e e e e e e e e e e e e e e e e e e e 23
216 Select e e 23
2061 Parameters L e e e e e e e e e e 23
2.16.2 Example . .. e e e e e e 24
2.06.3 SUPPOIt . . . o o e 24
217 Selectwithindex e 24
Sirenia 3

Fields September 23,2020

2070 Parameters e e e e e e e 24
2172 Example e e e 24
2073 SUPPOIt . . . e e e e e e 25
218 Selectwithoffset e 25
2181 Parameters e e e e 25
2.18.2 Example e e e 25
2083 SUPPOIt . . . e e e e e e 25
2.19 Selectwithoffsetandskip 25
2090 Parameters e e e e 25
2.19.2 Example e e 26
2093 SUPPOrt . . . e e e e e e e 26
2.20 Editcell e e e 26
2200 Parameters e e e 26
2.20.2 Example e e 26
2.21 Highlight 27
2211 Example . .. e e e e 27
2.21.2 SUPPOrt . . . e e e e e e e 27
2.22 Highlightwithcolor 27
2.22.1 Parameters e e e e e e e e e e e e e 28
2.22.2 Example . .. e e e e e e 28
2.22.3 SUPPOrt . . . e e e e e e 28
223 Lowlight 28
2.23.01 Example . .. e e e e 28
2.23.2 SUPPOrt . . . e e e e e e e 28

When configuring an application for automation purposes it is often necessary to interact with the
user-interface of the application in some manner. A field as concept in Cuesta represents an element
in the user-interface which can be interacted with.

This can be a button, a dropdown, a table or any other type of user-interface element. Once defined
a field can be manipulated in a flow, e.g. clicking a button named Ok would look like the following in
a flow:

Fields.Ok. Os
What happens in that statement is that we get the Ok field from the Fie'ld object. If the field name
is not a valid Javascript variable name, then use the object indexing scheme instead, e.g.:

Fields[’0k’]. ()s

Sirenia 4

Fields September 23,2020

1 Defining a field

A field can be identified from its path or using a screenshot of the field. The path approach utilizes
structural information in the user-interface while the screenshot is purely visual making it more brittle
wrt changes in application appearance. The Cuesta form for defining a field is given below:

Green background indicates
that the field will be found using

this path and not the screenshot
Launch the field finder

Means to locate field
Path 2

Mo screenshot

X offset Y offset

Screenshot
Match

confidence

Detect field o Grab screenshot = .

Figure 1: Defining a field in Cuesta

1.1 Paths to fields

A user-interface has a structure like a tree with the root of the tree being the window and the elements
the branching structure. For instance the following application layout:

Sirenia 5

September 23,2020

The structure of the user-interface above can be mapped to a tree like so

Window
I
I
|
Y,
Panel
I
|
o o +
I I |
I I |
Y, Y, v
TextField - Hello ... Button - OK Button - Cancel

To identify e.g. the Cancel button we use a scheme where you provide the path from the root of the

application to the element to be identified. In the example above an identifying could be (marked

with x):

*Windowx

|
I
|
\%

Sirenia

Fields September 23,2020

*Panelx

I

I
Fom o +
I I I
I I |
v v v

TextField - Hello ... Button - OK *Button - Cancelx

And in a textual form this translates to:

Panel/Button - Cancel

1.1.1 Path segments

Paths are compromised of a number of segments; one for each step down in the tree structure. Each
segment matches itself against a user-interface element, checking a set of predefined properties on
the element. These are commonly:

+ The type of the element (e.g. TextField, Label)
« The automation-id if present

The textual content of the element
+ The given name of the element
« and more ...

Thus the path in the previous example can be shortened to:
Panel/Cancel

The default matching algorithm for each segment simply checks if the given string is a substring of
the extracted element property. Using a few simple operatorswe provide more flexibility and greater
accuracy:

« *ancel matches any string ending with "ancel”

+ Can* matches any string starting with "Can”

« *an* matches any string containing "an”

« ".+an.+" matches the string against the regular expression . +an. +

Furthermore the segment *xx can be used to match deep into the structure, e.g. the path:
*% /Cancel

Will match the first element matching Cancel anywhere in the structure. This can also be used like
so:

Sirenia 7

Fields September 23,2020

Panel/**x/Cancel

Which matches any Cancel element with a Panel ancestor.

1.1.2 Special and advanced techniques

The following is a list of semi-rarely used techniques which can prove useful in tricky and non-
accessible user-interfaces.

Locating via relative position

Ifitis not possible to locate afield directly then it may be possible to use another more easily locatable
field as a sort of anchor and then using the relative (according to the anchor) position of the desired
field as a guide. This is often the case with fields that have easily locatable labels. Using the label
as the anchor and then specifying e.g. that the desired field is the textfield below the anchor is then
possible. A positional path looks like:

*x /Panel/AnchorElement<above>DesiredElement

This path will cause the AnchorElement to be found and then a search for the nearest
DesiredElement below the anchor. It should be read as ”look for a Panel element somewhere
in the tree, then find a child AnchorElement which is positioned above a DesiredElement
which is our target”.

The possible positional hints are:

« <above> the anchor element must be found above the target

+ <below> the anchor element must be found below the target

« <left-of> the anchor element must be found left of the target

+ <right-of> the anchor element must be found right of the target
+ <nearest> the nearest matching element to the anchor is selected

The closest match is the one selected if there are more matching elements in all the above cases.

Skipping matches

In case the user-interface contains "twins” i.e. undistinguishable elementsin the same level of the tree
then then the skip operator (#) can be used to select the i’th matching sibling. Consider the following
tree:

Panel
|- Button
| - Button

Sirenia 8

Fields September 23,2020

‘- Button
In order to target the 2nd button we might use the following path:
Panel/Button#1l

The skip operator can only be used with the last element in the path and will thus only apply to the
siblings of the targeted element.

Restricting path property types (native applications only)

To increase path resolution speed in native applications you can specify which property on
the Ul element should be used for matching each path segment by prefixing the segment with
(<type-goes-here>). A button with the text "Ok” can then be specified with x* / (text) Ok.
The type can appear on all segments e.g.

**x [/ (type)Panel/ (text)Ok
Which resolves any Ul element with the text ”Ok” directly inside a panel.
The available property-types are:

« idthe (automation)id of the element
text the text representation of the element (normally the text you can see in the Ul)

« class the class of the Ul element

type the type of the Ul element
« name the name of the Ul element

The type can be "button”, ”panel”, "7menu”, “textbox” etc.

Backtracking (in web-applications only)

Another rarely occurring case is when the target can only be uniquely matched by targeting one of its
descendents. In the following example we have a clearly locatable Ok Button but we are really only
interested in an anonymous Panel locate two levels up in the tree.

Panel <- this is our target
‘-~ Panel
‘— Button - Ok <- this is the Button we can locate

Here we can target the desired panel by way of the following path:
[Panel] /Panel/0k

The [and] effectively tells the path targeting mechanism to do the full path resolution but return the
element contained within.

Sirenia 9

Fields September 23,2020

Using CSS selectors (in web-applications only)

An alternative path format for use in web-applications is using CSS selectors. In some cases using CSS
selectors is easier and faster. E.g. for finding an element with a specificid:

#the-1id
vs the normal path format:
** /the-1id

The latter being faster.

Searching a specific embedded window

Given a multi-window application or an application with many embedded "windows”, it is sometimes
useful to limit the search for a given element to a specific window. This is done by prefixing the path
with {title-of-window} and thus limiting the search to any windows whose title matches the
given. E.g.:

{MyWindow}**/Panel/Ok

1.2 Opticalfields

Opticalfields are simply small screenshots of the user-interface element with an optional offset which
Manatee will try to find visually and translate to a proper element. The offset is used e.g. when clicking
s.t. the actual click is offset from the found location of the element.

1.2.1 Using the built-in screenshot-taker

If the field can only be identified by a screenshort press the Grab screenshot button. A red square will
appear which can be move and resized to fit the field. When the red square fits the field click on the
square once. The square turns green and is now fixed to the field. In order to be able to click on the
field (if applicable) click on the position on the screen where the click must be done. A red dot will
show where the click will be done.

Sirenia 10

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors

Fields September 23,2020

=X

Middle button

Xoffset 5 Yoffset

36 13

Screenshot
Match
confidence

07 %

Grab screenshot = .

Screenshot of application Ul
element is grabbed from the
running application

1

| | x

Disable middle button } m Enable middle button

Figure 2: The built-in screenshot taker in action

-
T
I

The screenshort is shown in Cuesta. The click position can be adjusted in the X and Y offset fields.
Match confidence can be set to reduce how acurately the screenshort should match the graphics on
the screen in the application in order to have a match on the field. It can typically be set to 0.7.

1.3 Testing a path

Given a path it is useful to be able to see that the element found when the path resolution is done in
Manatee is the correct element found. This can be done directly from Cuesta or by using the field in a
flow.

Sirenia 1

Fields September 23,2020

1.3.1 Using Cuesta

Activating the locate button in Cuesta will cause a local Manatee to highlight the field found. Thisis a
quick and easy way to check whether the path is correct or not.

Grab screenshot H -

I& Copy v Up

Use the locate button
to find and highlight
a field from its path.

Remember to save
before clicking the
button.

Figure 3: Click the locate button to find and highlight the field

1.3.2 Using a flow or the debugger

It is also possible to use a flow or the REPL in the Debug. ger () to highlight, inspect or otherwise
manipulate and test a path. Fields can be created on-the-fly in a flow meaning that the following code
is a quick way to try out a path:

var f = new Field(’*x/Panel/0Ok’)3

f.highlight()s // to try and highlight the element
f.click()s // to try and click the element
f.inspect()s // to gain more info about the element

Sirenia 12

Fields September 23,2020

// and other field methods

2 Fields API

Once a field has been defined it can be used in a flow. Depending on the type of field (i.e. whether it
represents a button, a panel or something else) the following methods are available.

2.1 Click

Will click on the given field.

2.1.1 Parameters

« options anoptional options object, supports;

+ deadline the time in ms to wait for the click to fail/succeed. If the click takes longer than the
deadline to fail or succeed it will be reported as succeeding to the caller. The use-case for the
deadline parameterisforexampleif the click launches a dialog which blocks the thread, then
setting a deadline allows the flow to continue even though the click is technically not done.

+ useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the un-
derlying model. Defaults to false (underlying model traversal).

2.1.2 Example

Fields[”mybutton”]. Os

// With an optional 500 ms deadline
Fiels[”mybutton”]. ({ deadline: 500 })3

2.1.3 Support

ChromeDriver

IEDriver

JavaDriver

NativeDriver

Sirenia 13

Fields September 23,2020

2.2 Click with offset

Will click on the given field offset by the amount given. It allows you to e.g. click in the middle of a
table row or the corner of a button.

2.2.1 Parameters

« options an optional options object, supports;

« deadline the time in ms to wait for the click to fail/succeed. If the click takes longer than the
deadline to fail or succeed it will be reported as succeeding to the caller. The use-case for the
deadline parameterisforexampleif the click launches a dialog which blocks the thread, then
setting a deadline allows the flow to continue even though the click is technically not done.

2.2.2 Example

// Click myButton 10px from top and 10px from left
Fields[”mybutton”]. (10, 10);

2.2.3 Support

« JavaDriver
« NativeDriver

2.3 Simulated Click

Will simulate a mouse-click on the given field. The difference between simulate-click and click is only
relevant for Java applications where mouse-events can be generated directly (click) or as a series of
injected events - mousedown, mouseclicked, mouseup (simulateClick).

2.3.1 Example

Fields[”mybutton”]. Os

Sirenia 14

Fields September 23,2020

2.3.2 Support

o ChromeDriver
« JavaDriver

2.4 Simulated click with offset

Will click on the given field offset by the amount given. It allows you to e.g. click in the middle of a
table row or the corner of a button.

2.4.1 Example

// Click myButton 10px from top and 10px from left
Fields[”mybutton”]. (10, 10);
2.4.2 Support

« JavaDriver
« NativeDriver

2.5 Right click

Will right-click on the given field.

2.5.1 Parameters

« options an optional options object, supports;

« deadline the time in ms to wait for the click to fail/succeed. If the click takes longer than the
deadline to fail or succeed it will be reported as succeeding to the caller. The use-case for the
deadline parameterisforexampleif the click launches a dialog which blocks the thread, then
setting a deadline allows the flow to continue even though the click is technically not done.

2.5.2 Example

Sirenia 15

Fields September 23,2020

Fields[”mybutton”]. O

2.5.3 Support

o ChromeDriver
« JavaDriver
« NativeDriver

2.6 Right-click with offset

Will click on the given field offset by the amount given. It allows you to e.g. click in the middle of a

table row or the corner of a button.

2.6.1 Parameters

« options an optional options object, supports;

+ deadline the time in ms to wait for the click to fail/succeed. If the click takes longer than the
deadline to fail or succeed it will be reported as succeeding to the caller. The use-case for the
deadline parameterisforexampleif the click launches a dialog which blocks the thread, then
setting a deadline allows the flow to continue even though the click is technically not done.

2.6.2 Example

// Click myButton 10px from top and 10px from left
Fields[”mybutton”]. (10, 10);

2.6.3 Support

« JavaDriver
« NativeDriver

2.7 Double click

Will double-click on the given field.

Sirenia 16

Fields September 23,2020

2.7.1 Parameters

« options an optional options object, supports;

+ deadline the time in ms to wait for the click to fail/succeed. If the click takes longer than the
deadline to fail or succeed it will be reported as succeeding to the caller. The use-case for the
deadline parameterisforexampleif the click launches a dialog which blocks the thread, then
setting a deadline allows the flow to continue even though the click is technically not done.

2.7.2 Example

Fields[”mybutton”]. Os

2.7.3 Support

o ChromeDriver
« JavaDriver
« NativeDriver

2.8 Double-click with offset

Will click on the given field offset by the amount given. It allows you to e.g. click in the middle of a
table row or the corner of a button.

2.8.1 Parameters

« options an optional options object, supports;

+ deadline the timein ms to wait for the click to fail/succeed. If the click takes longer than the
deadline to fail or succeed it will be reported as succeeding to the caller. The use-case for the
deadline parameterisforexampleif the click launches a dialog which blocks the thread, then
setting a deadline allows the flow to continue even though the click is technically not done.

2.8.2 Example

// Click myButton 10px from top and 10px from left
Fields[”mybutton”]. (10, 10);

Sirenia 17

Fields September 23,2020

2.8.3 Support

« JavaDriver
« NativeDriver

2.9 Click cell

Click in a cellin table (only applicable for tables). Clicking a cell has the following variants:

« clickCell(...) leftclickacell,
« rightClickCell(...),and
« doubleClickCell(...).

All with the following parameters:

2.9.1 Parameters

« rowMatch a text to match in the row - if an integer is supplied then that is used to select the
row number
« colMatch atext to match in a column header
« options anoptions object on which the follow properties can be set;
- deadlinethetimein msto wait for the click to fail/succeed. If the click takes longer than
the deadline to fail or succeed it will be reported as succeeding to the caller.
- reflectionDepth indicates how deep to do the search for the rowMatch value (also
see Reflection depth)
- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to false (underlying model traversal).

2.9.2 Example

// Click in the cell defined by its row containing ’A’ and its column (header) c
Fields[”myTable”]. (’A’, ’B’)3

// The same command but use reflection depth to do a deeper search

Fields[”myTable”]. (’A’y, ’B’, { reflectionDepth: 2 });
// Click row 10 in column with header ’B’
Fields[”myTable”]. (10, ’B’, { reflectionDepth: 2 })3

Sirenia 18

Fields September 23,2020

2.9.3 Support

« NativeDriver
« JavaDriver

2.10 Read

Will read the value of the field. Depending on the type of the field the behavior will differ, e.g. on a
label it will return the text content of the label, for a text-field it will return the contents of the text-field.
For a more complex container type it will return a JSON representation of the control (which can be
natively accessed in the flow as an object). See JSON serialisation for details on how different types
are serialised.

2.10.1 Parameters

« options an optional options object with details regarding the inspection.
- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to fa'lse (underlying model traversal).

2.10.2 Example

var contents = Fields[”mytextfield”]. Os

2.10.3 Support

« ChromeDriver

IEDriver (complex content not supported)
JavaDriver

« NativeDriver

2.11 Exists

Returns true if the field could be found.

Sirenia 19

Fields September 23,2020

2.11.1 Example

if(Fields[”mytextfield”]. 0) {

2.11.2 Support

ChromeDriver

IEDriver

« JavaDriver
NativeDriver

2.12 Inspect

Inspect a given field. The returned object will contain misc information about the field - the type of
information depends on the type of the field.

2.12.1 Parameters

« options an optional options object with details regarding the inspection.
- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to false (underlying model traversal).
- reflectionDepth (see below)

2.12.2 Reflection depth

You can optionally obtain more detailed information about the data in eg treeviews. To do this, pass
a positive reflectionDepth value as shown in the examples below.

As an example, reflectionDepth: 3 means the result includes fields such as arrival.date.day (3
steps) but noteg patient.eyes.left.tla (4 steps).

The reflectionDepth paramater affects the data available in the output under the objects in the
control in question (eg treeview nodes). The main use of this feature is to determine which patterns
tousewith Field[’field’].select () whensimply selecting the rendered text doesn’t work.

Sirenia 20

Fields September 23,2020

2.12.3 Example

var info = Fields[”mytextfield”]. Os

// See which information was returned

Debug. (JSON. (info))s

// If info has a ‘text‘ property, then this will show the text

Debug. (info.) &

var detailedInfo = Fields[”myTreeView”]. ({ reflectionDepth: 2})3
// This object includes extra data under the nodes of ’myTreeView’.
Debug. (JSON. (detailedInfo))s

2.12.4 Support

« JavaDriver
« NativeDriver

2.13 Input

Input a text value into a textfield/textbox/etc.

2.13.1 Parameters

+ textthetexttoinput
« options an optional options object.
- useCachedUI an optional boolean indicating if Ul component lookup should use the Ul
itself or the underlying model. Defaults to false (underlying model traversal).
- fileanoptional booleanindicatingif the field is an htmlfile input, which requires special
treatment. If this is set to true, then the value must be a valid path that points to a file or
an exception may be thrown. Only applicable to web apps.

2.13.2 Example

Fields[”mytextfield”]. (”some text”);

Fields[”myFileField”]. (”C:\\some\\file.txt”, { file: true });

Sirenia 21

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/file

Fields September 23,2020

2.13.3 Support

ChromeDriver

IEDriver

JavaDriver

NativeDriver

2.14 Native input

Inputs text into a field using native events, i.e. simulating keyboard input. This is useful for fields
which does validation (e.g. date-fields or similar). Use only if the input method does not work.

2.14.1 Parameters

« text the text to input - you can use <backspace> to indicate a backspace/delete action, as
well as <enter> and <tab>.

2.14.2 Example

Fields[”mydatefield”]. (”111120117)
Fields[”mydatefield”]. (”123<backspace>”)s // field will contain 12’

2.14.3 Support

« ChromeDriver
« NativeDriver
« JavaDriver

2.15 Native input with delay

Inputs text into a field using native events with a given delay between each keystroke simulating key-
board input. This is useful for fields which does validation (e.g. date-fields or similar). Use only if the
input method does not work.

Sirenia 22

Fields September 23,2020

2.15.1 Parameters

+ textthetexttoinput
« delay the number of milliseconds to wait between each "keystroke”

2.15.2 Example

Fields[”mydatefield”]. (”some text”, 100);

2.15.3 Support

o ChromeDriver
« JavaDriver

2.16 Select

Select a value. This only works for dropdowns, listboxes and tree-views.

Note that for tree-views the value given to this function may be an expression which matches the path
to a leaf. E.g. for the following tree:

tree

B
L

The node c may be selected by:

Fields[”tree”]. (”a/b/c”)s

2.16.1 Parameters

+ value the value to select. By default value is treated as a regular expression, where char-
acters like ., x and (have special meaning. If you want a literal match you need to surround
value with <<and >>,e.g. select (’<<’+v+’>>’) where v is the literal value to match.

« options an optional options object with details regarding the selection.

Sirenia 23

Fields September 23,2020

- deadline the time in ms to wait for the select to fail/succeed. If the select takes longer
than the deadline to fail or succeed it will be reported as succeeding to the caller.

- reflectionDepth an option indicating how far the select matching should dive into
java objects (eg treeview nodes). Setting this too high may negatively affect performance.
Defaults to 0. Use the inspect method to determine how to match against this informa-
tion and what an appropriate (minimal) reflection depth is.

- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to false (underlying model traversal).

2.16.2 Example

// Select ”optionl” and use reflectionDepth to to try and find ”optionl”
Fields[”mytree”]. (Poptionl”, { reflectionDepth: 2 });

2.16.3 Support

ChromeDriver

IEDriver
JavaDriver

NativeDriver

2.17 Select with index

Select a value based in an index. This only works for dropdowns, listboxes and tree-views.

2.17.1 Parameters

« index istheindexinthe combo, listbox or tree to select.
+ options an optional options object with details regarding the selection.
- useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the
underlying model. Defaults to false (underlying model traversal).

2.17.2 Example

Sirenia 24

Fields September 23,2020

Fields[”mycombo”]. (5);

2.17.3 Support

« JavaDriver
« NativeDriver

2.18 Select with offset

Select a value (with an offset). This only works for dropdowns, listboxes and tree-views.

2.18.1 Parameters

« valuethevaluetobaseselection on. The value needs only to partially match the shown option
to be selected, e.g. using "utte” in a list containing the item "butter” will select it.

+ offset (int) the offset which will be used to do actual selection. E.g. if ”1” then the next ele-
ment (which was found using value will be selected).

2.18.2 Example

Fields[”mytree”]. (Poptionl”, 1);

2.18.3 Support

« JavaDriver

2.19 Select with offset and skip

Select a value (with an offset and skip). This only works for dropdowns, listboxes and tree-views.

2.19.1 Parameters

« valuethevalueto baseselection on. The value needs only to partially match the shown option
to be selected, e.g. using "utte” in a list containing the item "butter” will select it.

Sirenia 25

Fields September 23,2020

« offset (int) the offset which will be used to do actual selection. E.g. if ”1” then the next ele-
ment (which was found using value will be selected).
+ skip will select the N’th match to start from. E.g. 1 will skip the first match and select the 2nd.

2.19.2 Example

Fields[”mytree”]. ("optionl”, 1, 1)}

If used on e.g. a combobox with options; [“option1”, “option2”, ”option1”, "option3”] the code-
fragment above will select "option3”. This is done by first looking for all "option1”s. Then skip 1 this
will get you the 2nd "option1”, then offset by 1 which will get you "option3”.

2.19.3 Support

« JavaDriver

2.20 Editcell

Can be used in a table to edit a given cell.

2.20.1 Parameters

« row the row in which to find the cell (match any cell in the row)
column the column in which to find the cell (must match a single column)

value the value to put into the cell (works with textfield and dropdowns)

« optionsisan optional argument, which can contain:
- reflectionDepth used to finding the value if there is e.g. a combobox in the cell to
edit (also see Reflection depth)

useCachedUI boolean indicating if Ul component lookup should use the Ul itself or the un-
derlying model. Defaults to false (underlying model traversal).

2.20.2 Example

Given the following table:

Sirenia 26

Fields September 23,2020

header1 header2

cell1 cell 2
cell 3 cell 4
This command:
Fields[”mytable”]. (”’cell 37, ”header 2”, ”boom”)}

Will result in this table:

header1 header2

cell1 cell 2

cell 3 boom

2.21 Highlight

Highlight the given field with the default color.

2.21.1 Example

Fields[”myfield”]. Os

2.21.2 Support

ChromeDriver

IEDriver

JavaDriver

« NativeDriver

2.22 Highlight with color

Highlight the given field with the given color. Available colors are red, green and blue.

Sirenia 27

Fields September 23,2020

2.22.1 Parameters

« color the highlighting color - red, green or blue.

2.22.2 Example

Fields[”myfield”]. (”blue”)

2.22.3 Support

ChromeDriver

IEDriver

« JavaDriver
« NativeDriver

2.23 Lowlight

Cancel a highlight on a field.

2.23.1 Example

Fields[”myfield”]. oF

2.23.2 Support

« ChromeDriver
« |EDriver
« JavaDriver

Sirenia 28

	Defining a field
	Paths to fields
	Path segments
	Special and advanced techniques

	Optical fields
	Using the built-in screenshot-taker

	Testing a path
	Using Cuesta
	Using a flow or the debugger

	Fields API
	Click
	Parameters
	Example
	Support

	Click with offset
	Parameters
	Example
	Support

	Simulated Click
	Example
	Support

	Simulated click with offset
	Example
	Support

	Right click
	Parameters
	Example
	Support

	Right-click with offset
	Parameters
	Example
	Support

	Double click
	Parameters
	Example
	Support

	Double-click with offset
	Parameters
	Example
	Support

	Click cell
	Parameters
	Example
	Support

	Read
	Parameters
	Example
	Support

	Exists
	Example
	Support

	Inspect
	Parameters
	Reflection depth
	Example
	Support

	Input
	Parameters
	Example
	Support

	Native input
	Parameters
	Example
	Support

	Native input with delay
	Parameters
	Example
	Support

	Select
	Parameters
	Example
	Support

	Select with index
	Parameters
	Example
	Support

	Select with offset
	Parameters
	Example
	Support

	Select with offset and skip
	Parameters
	Example
	Support

	Edit cell
	Parameters
	Example

	Highlight
	Example
	Support

	Highlight with color
	Parameters
	Example
	Support

	Lowlight
	Example
	Support

